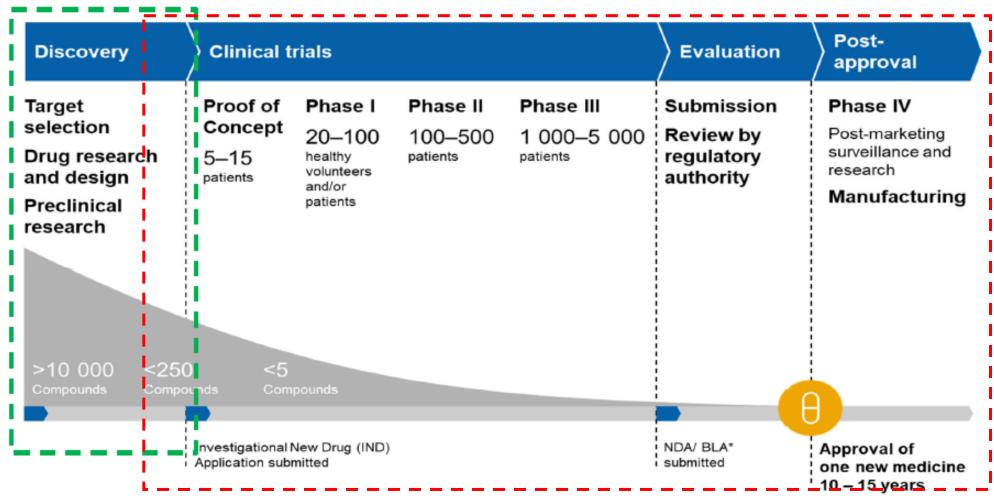
Sustainable Chemistry in Pharmaceutical Industry

Lucie Lovelle
EPFL / ETH
December 2024



Reimagining Medicine

The Path to a New Medicine

^{*}New Drug Application / Biologics License Application

Reimagining Medicine

Agenda

Introduction

What is development? What is a process chemist? What are the pharma industry main constrains?

Assignment

Presentation of synthesis routes. Comment on pros & cons of each routes, select your favorite.

Theory

Sustainability metrics, synthesis, process development

Questions/Answers

I will try to take the temperature and ask few questions throughout the talk, please do the same!

Case Studies

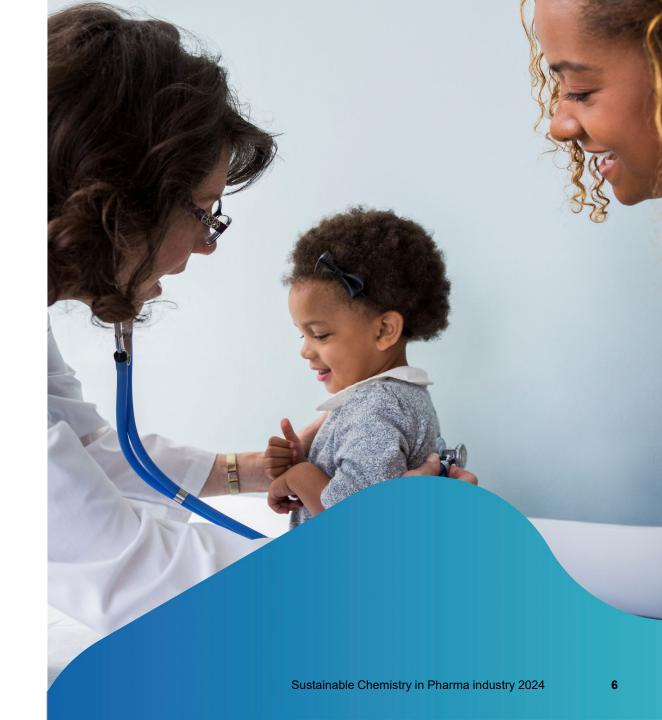
Bedaquiline (commercial drug from Jansen) & Novartis internal compounds (IDH305, LOU064)

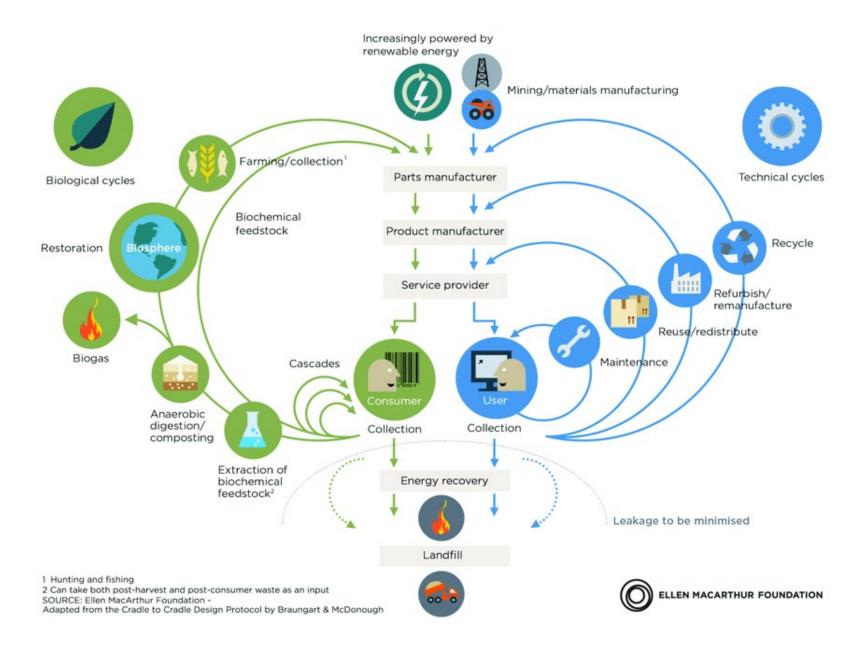
Pharmaceutical industry 101

Technical Research and Development

Drug Substance = Active Pharmaceutical Ingredient (API)

- → Chemical composition (main + impurity profile)
- → Physical form (polymorph, particle size distribution)


Drug Product = what the patient see (API + excipients)


- → Tablets, capsules, suspension, powder...
- → Choice of excipients (fillers, lubricants, coatings...)
- → Packaging (blisters, dessicants...)

Pharma vs other industries

- Highly regulated industry:
 - Fragile population
 - Optimized uptake of product
 - "Therapeutic advantage" is fading away
- Usually higher molecular complexity
 - Longer synthesis
 - Complex transformation
- Relatively low volumes to produce

Sustainability in Pharmaceutical Development

- **R&D**

- Optimization of care pathways
- Waste, energy consumption...

- Manufacturing

 sustainable route of manufacturing, source of raw materials, green logistics, clean energy sources, waste treatment, recycle/recover...

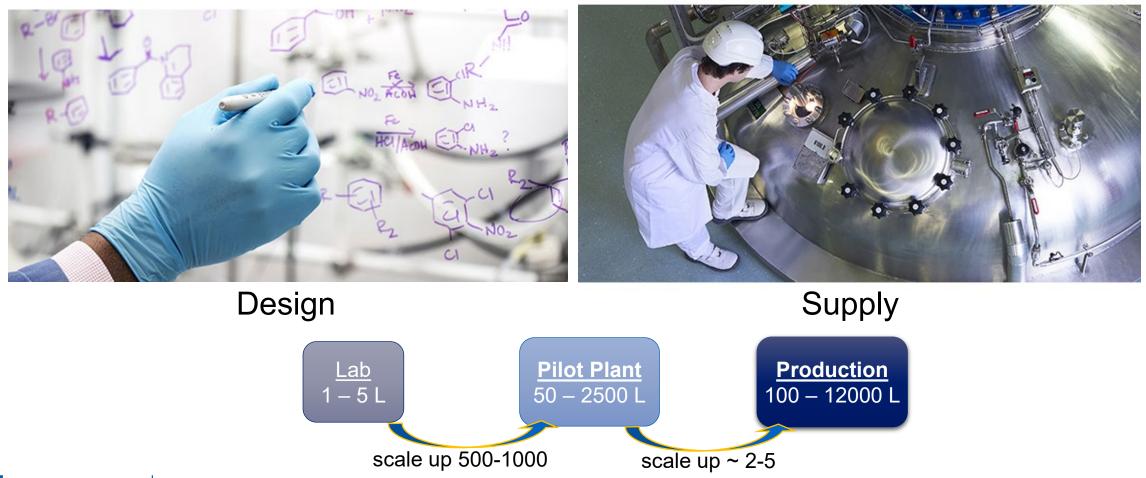
Packaging

 materials, units per package, collection, recycability of devices and packaging...

Clinical trial drug supply

- waste reduction, stock management, shipment optimisation,...

Chemical and Analytical Development


From Research to Production

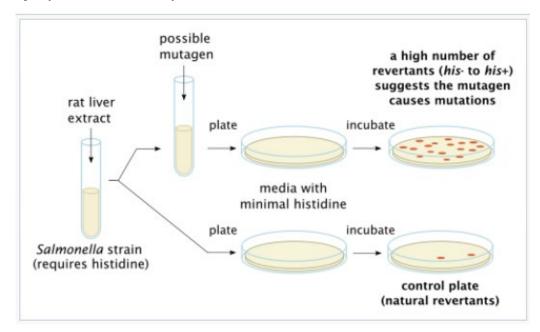
Chemical and Analytical Development

From Research to Production

Drug Substance Quality Requirement

ICH Q3A guidelines for impurities in new drug substance:

- Reporting Threshold: A limit above which an impurity should be reported.
- Identification Threshold: A limit above which an impurity should be identified.
- Qualification Threshold: A limit above which an impurity should be qualified.


Maximum Daily Dose ¹	Reporting Threshold (3)	Identification Threshold ³	Qualification Threshold ³
≤ 2g/day	0.05%	0.10% or 1.0 mg per day intake (whichever is lower)	0.15% or 1.0 mg per day intake (whichever is lower)
> 2g/day	0.03%	0.05%	0.05%

³ Lower thresholds can be appropriate if the impurity is unusually toxic.

Mutagenic impurities (MI)

- Mutagenicity is associated with cancer as it often stems from a DNA-mutation.
- When identified, all impurities present in drug substance are first screened in-silico for structural features favoring mutagenicity.
- All molecules giving an in-silico alert are treated as mutagenic unless they are proven non-mutagenic via a bacterial reverse mutation assay (Ames test).
- In absence of specific carcinogenicity data, mutagenic impurities must be controlled according to the conservative threshold of toxicological concern (TTC).

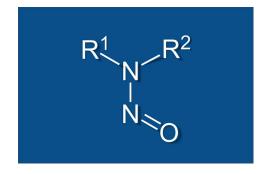
Mutagenic impurities (MI)

 TTC (threshold of toxicological concern): 1.5 μg/day, which correspond to a statistical risk of 10⁻⁵ of cancer for lifetime exposure.

• From the TTC limit, acceptable intake are defined for development:

Duration of treatment	≤ 1 month	>1 - 12 months	>1 - 10 years	>10 years to lifetime
Daily intake [µg/day]	120	20	10	1.5

• Limit concentration of an MI in paracetamol (MDD = 4 g): 0.375 ppm (0.000038%)


Nitrosamines – a new level of complexity

Nitrosamine are suspected highly carcinogenic compounds.

They can easily be formed from secondary amines and a nitrosating species.

Known nitrosating species are present in the air (NOx), water and a significant number of inorganic bases and salt, excipients...

Nitrosamines needs to be controlled on even lower level.

Sustainability vs other priorities

Where can we act?

Synthesis route design:

- Convergence
- Starting materials from biorenewable feedstock
- Benign by design

Process:

- Choice of reagents
- Choice of solvents
- Reaction conditions
- Optimisation

Waste:

- 3 Rs principle

Synthesis Route

General concept in development

Two stage concept

Fast lock of the pratical synthesis:

- Suboptimal for commercial needs
- Allow for a fast clinical trial supply with adequate quality
- Low risk synthesis that will ensure steady supply
- Ensure all quality aspects

Final synthesis for pivotal trials:

- Use clinical development time to identify and develop an optimal synthesis
- Maximizes R&D time while having enough clinical supplies left to improve, optimize and understand the final process

What is a good synthesis route?

Aspects to be considered for the ideal synthesis

Safety

Number of steps

Yield

Ease of scale-up

Robustness

Ecologically bening

Availability / origin of raw materials

Complexity of synthesis

Environmentally acceptable

Which synthetic route is the best one? Comparison of synthetic routes

How do we assess how «good» a synthesis is? How do we compare two synthetic routes?

Which synthetic route is the best one?

Comparison of synthetic routes

Examples for route assessment tools:

Kepner-Tregoe decision analysis (Astra-Zeneca)

J. S. Parker, J. D. Moseley, *Org. Proc. Res. Dev.* **2008**, *12*, 1041-1043; J. D. Moseley, D. Brown, C. R. Firkin, S. L. Jenkin, B. Patel, E. W. Snape, *Org. Proc. Res. Dev.* **2008**, *12*, 1044-1059; J. S. Parker, J. F. Bower, P. M. Murray, B. Patel, P. Talavera, *Org. Proc. Res. Dev.* **2008**, *12*, 1060-1077.

→ Define «Musts» (e.g. safety) and «Wants» (e.g. high yield), weigh the «Wants» (score 1-10), evaluate synthetic routes regarding «Wants» (score 0-10)

Holistic route selection (Dow)

R. B. Leng, M. V. M. Emonds, C. T. Hamilton, J. W. Ringer, Org. Proc. Res. Dev. 2012, 16, 415-424.

→ List route selection criteria (RSC), define metrics for each RSC, weigh RSC, rate each route on a 1-3-9 scale

Which synthetic route is the best one?

Comparison of synthetic routes

Route ideality

- T. Gaich, P. S. Baran, *J. Org. Chem.* **2010**, *75*, 4657-4673.
- → Evaluation of «ideality» of synthesis (in %) by comparing the number of construction and strategic redox steps with the total number of steps

Current complexity (Bristol-Myers Squibb)

- J. Li, M.D. Eastgate, *Org. Biomol. Chem.* **2015**, *13*, 7164-7176.
- → Assessment of synthetic complexity, taking into account intrinsic challenges (structure) and current synthetic methodology

Process complexity (Boehringer Ingelheim)

- F. Roschangar, R. A. Sheldon, C. H. Senanayakea, *Green Chem.* **2015**, *17*, 752-768.
- → Number of construction reactions and strategic redox steps

Which synthetic route is the best one?

Comparison of synthetic routes

SELECT (Astra Zeneca)

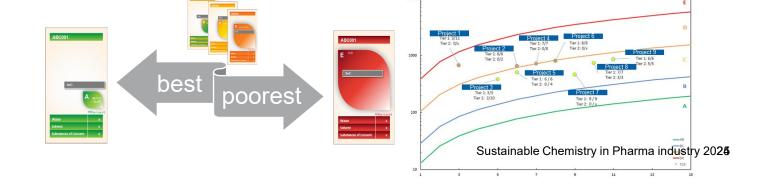
M. Butters, D Catterick, A. Craig, A. Curzons, D. Dale, A. Gillmore, S. P. Green, I. Marziano, J.-P. Sherlock, W. White, *Chem. Rev.* **2006**, *106*, 3002-3027.

→ Six criteria: Safety, Environmental, Legal, Economics, Control, Throughput

Criteria		
Safety	Process SafetyExposure to substances harmful to health	
Environmental	Volume of wasted natural resourcesSubstances harmful to the environment	
Legal	Infringement of intellectual property rightsRegulations that control use of reagents and intermediates	
Economics	Meeting cost of goods target for future marketInvestment costs to support development quantities	
Control	Control of quality parametersControl of chemistry and physical parameters	
Throughput	Time scale of manufacture in available plantAvailability of raw materials	

The Novartis Labelling Process

PMI


- Process Mass Intensity (all materials used for synthesis, isolation, purification)
- $PMI = \frac{\text{Quantity of raw materials input (kg)}}{\text{Quantity of bulk API out (kg)}}$

TCR

- Total Carbon Dioxide Release (CO₂ release by waste incineration per kg API)
- TCR = $PMI_{organic} \times 2.3 \text{ kg CO}_2 + PMI_{aqueous} \times 0.63 \text{ kg CO}_2$

Steps

• Number of chemical transformations required to reach the respective molecule

Which synthetic route is the best one? Comparison of synthetic routes

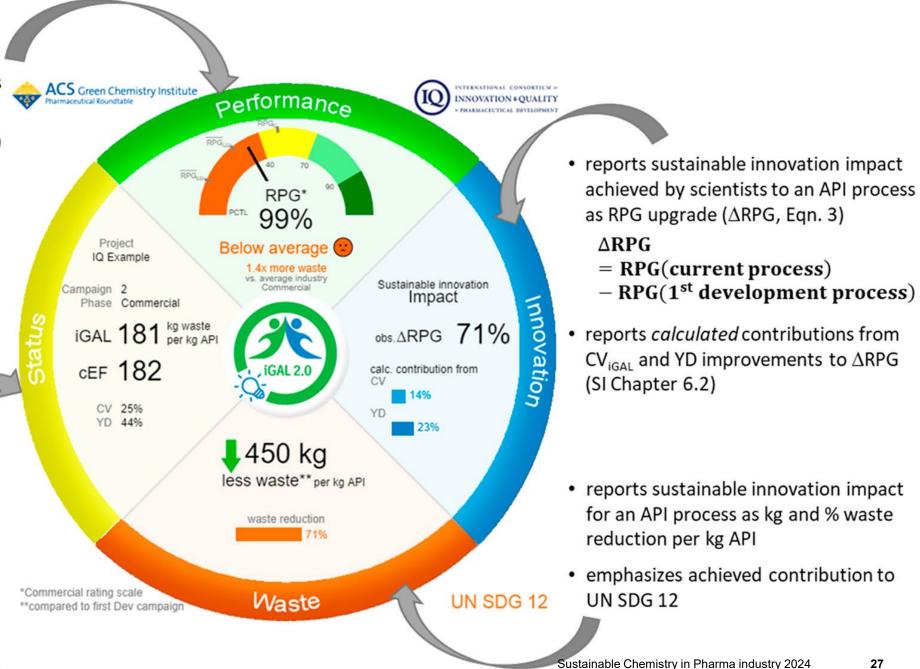
 $iGAL = mGAL/1000 \times FMW = 0.403 \times FMW$

iGAL: ideal green aspiration level

mGAL: API complexity adjusted pharmaceutical waste index

FMW: free molecular weight (i.e. MW without salt, solvate...)

ACS Sustainable Chemistry & Engineering 2022 10 (16), 5148-5162


 reports % Relative Process Greenness (RPG) comparison to commercial industry average from our database as speedometer dashboard

$$RPG = iGAL/cEF \times 100\%$$
 (Eqn. 2)

- reports sustainability rating (excellent, good, average and below average) based on RPG rating matrix (Table 5)
- displays how much more/less waste is generated compared to processes in the same phase (Eqn. S9 and S10)

- captures API development phase, process waste (cEF), yield (YD) and convergence (CV_{iGAL})
- reports iGAL waste goal

 $iGAL = 0.403 \times FMW$ (Ean. 1)

Break?

Aspects to be considered for the ideal synthesis

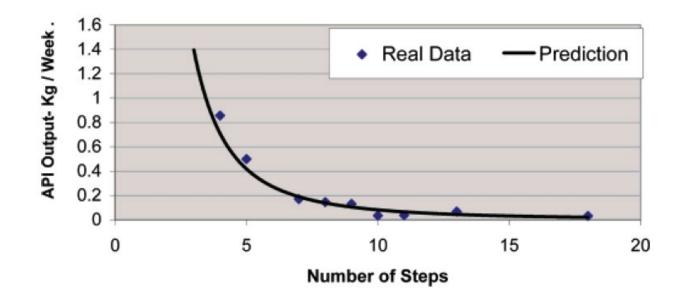
Safety

Number of steps

Yield

Ease of scale-up

Robustness

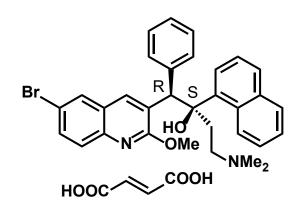

Ecologically bening

Availability / origin of raw materials

Complexity of synthesis

Environmentally acceptable

Effect of sequence length on throughput


Why?

- 1. Matematical effect
- 2. «Campaign» set-up

Yield?

Case study: Bedaquiline

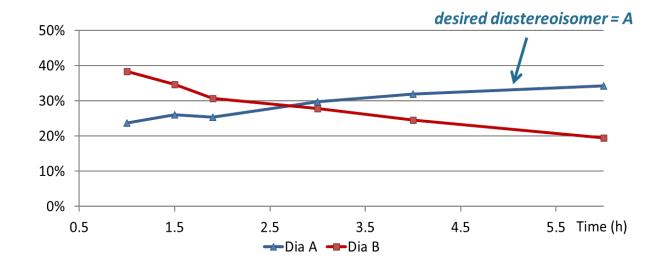
- Janssen drug approved for MDR-TB (2012/2014)
- Lethal infectious disease caused by Mycobacteria Mainly affects the lungs but not only (pleura, CNS, lymphatic or genitourinary system, bones and joints)
- Tuberculosis (TB) status in 2013*:
 - 9 million new cases of TB
 - 1.5 million people died from TB
 - 480 000 new cases of MDR-TB (more & more as first diagnosis)**
 - 9% estimated XDR-TB

* WHO: Global tuberculosis report 2014

** MSF «Out of step» report, Oct 2014

First enantioselective synthesis

Scheme 3. Shibasaki's enantioselective synthesis of BDQ.


Academic Synthesis

Scheme 4. Chandrasekhar's asymmetric synthesis of BDQ.

Industrial synthesis

Industrial synthesis

Industrial synthesis

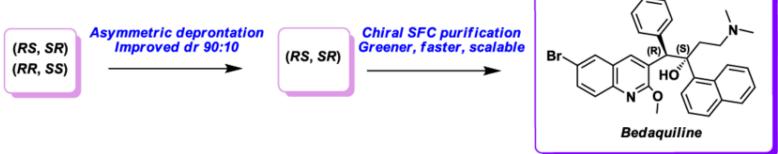


Table 1. Summary of Modifications Done with the Chiral Ligand 4a-b

entry	base	dr	% conversion ^a
1	LDA	50:50	31
2	<i>n</i> -BuLi/ 4a	50:50	33
3	<i>n</i> -BuLi/ 4a ·LiCl_	45:55	31
4	<i>n</i> -BuLi/ 4a ·LiCl ^c	30:70	32
5	<i>n</i> -BuLi/ 4b ·LiCl	90:10	33

 $^{^{\}circ}$ % Conversion was determined by liquid chromatography-mass spectrometry using a YMC-Triart-C18 column unless stated otherwise, and the dr was determined by crude 1 H NMR. The deprotonation step was conducted at $^{-}$ 20 $^{\circ}$ C for 60 min; thereafter, the reaction proceeded at $^{-}$ 78 $^{\circ}$ C. All optimization reactions were carried out on a 0.15 mmol scale unless stated otherwise.

^cAddition of *n*-BuLi to **4a**·HCl salt.

Figure 2. Chiral bases utilized in the lithiation step.

^bAddition of LiCl to neutral **4a**.

Chemistry-A European Journal

Research Article doi.org/10.1002/chem.202201311

www.chemeurj.org

Diastereoselectivity is in the Details: Minor Changes Yield Major Improvements to the Synthesis of Bedaquiline**

Sarah Jane Mear⁺,^[a] Tobias Lucas⁺,^[b] Grace P. Ahlqvist⁺,^[a] Juliana M. S. Robey,^[c] Jule-Philipp Dietz,^[b] Pankaj V. Khairnar,^[c] Sanjay Maity,^[c] Corshai L. Williams,^[a] David R. Snead,^[c] Ryan C. Nelson,^{*[c]} Till Opatz,^{*[b]} and Timothy F. Jamison^{*[a]}

Table 1. Selected examples of synthesis of 1 reported in process patent applications and improvements described herein.

Yield: yield of isolated product [a] Adjusted for purity where reported.

Application of Chiral Transfer Reagents to Improve Stereoselectivity and Yields in the Synthesis of the Antituberculosis Drug Bedaquiline

Juliana M. S. Robey,* Sanjay Maity, Sarah L. Aleshire, Angshuman Ghosh, Ajay K. Yadaw, Subho Roy, Sarah Jane Mear, Timothy F. Jamison, Gopal Sirasani, Chris H. Senanayake, Rodger W. Stringham, B. Frank Gupton, Kai O. Donsbach, Ryan C. Nelson,* and Charles S. Shanahan*

Scheme 9. Use of Chiral Lithium Amide of 11 to Promote Enhanced Stereoselectivity toward BDQ (3)

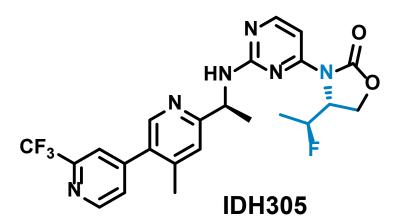
BDQ (3) Assay Yield Scale of quinoline 1 Additive d.r. (syn:anti) ee LiBr 64% 25 g 13.1:1 51% 75 g 64% LiBr 56% 13.6:1 **CHIRAL BASE**

Application of Chiral Transfer Reagents to Improve Stereoselectivity and Yields in the Synthesis of the Antituberculosis Drug Bedaquiline

Juliana M. S. Robey,* Sanjay Maity, Sarah L. Aleshire, Angshuman Ghosh, Ajay K. Yadaw, Subho Roy, Sarah Jane Mear, Timothy F. Jamison, Gopal Sirasani, Chris H. Senanayake, Rodger W. Stringham, B. Frank Gupton, Kai O. Donsbach, Ryan C. Nelson,* and Charles S. Shanahan*

Cite This: https://doi.org/10.1021/acs.oprd.3c00287

In general, all results indicate that the diastereoselectivity is the most sensitive parameter during BDQ (3) synthesis. There is a certain level of complexity associated with the formation of lithium aggregates in solution that makes their precise control very challenging, especially at small scales. Considering the sensitivity of this chemistry, it becomes more evident why a simplified procedure that does not make use of many reagents or additives to promote the desired stereoselectivity is ideal for BDQ (3) synthesis. A higher number of reagents and additives introduces additional stoichiometric sensitivities and the potential introduction of perturbing impurities. In this context, the M4ALL's chiral transfer approach for the BA reaction resembles our previous nonchiral approach since the only methodology modification was the replacement of pyrrolidine with the chiral amine 11.



Case study IDH305:

Project background

- Therapeutic Area: Oncology
- Mode of action: Inhibitor of mutant isocitrate dehydrogenase 1 (IDH1)
- Special biological features: potential brain penetration
- ■Main potential indications: Acute myeloid leukemia, Glioma & Glioblastoma
- Special chemical features: βfluorooxazolidinone

Shin Cho et al. ACS Med. Chem. Let. 2017, 8, 1116-1121.

Synthesis for initial scale-up

 K_2CO_3

Synthesis for initial scale-up

1 to 5: ~50%

threonine
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$

F₃C 12

Overall ~14%

 K_2CO_3

K₂CO₃

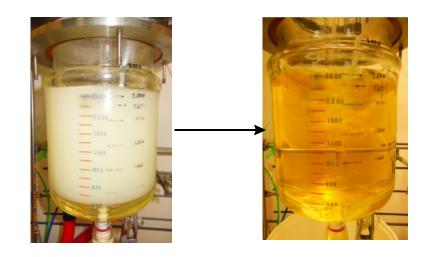
CF₃

Cbz group: pro & cons?

K₂CO₃

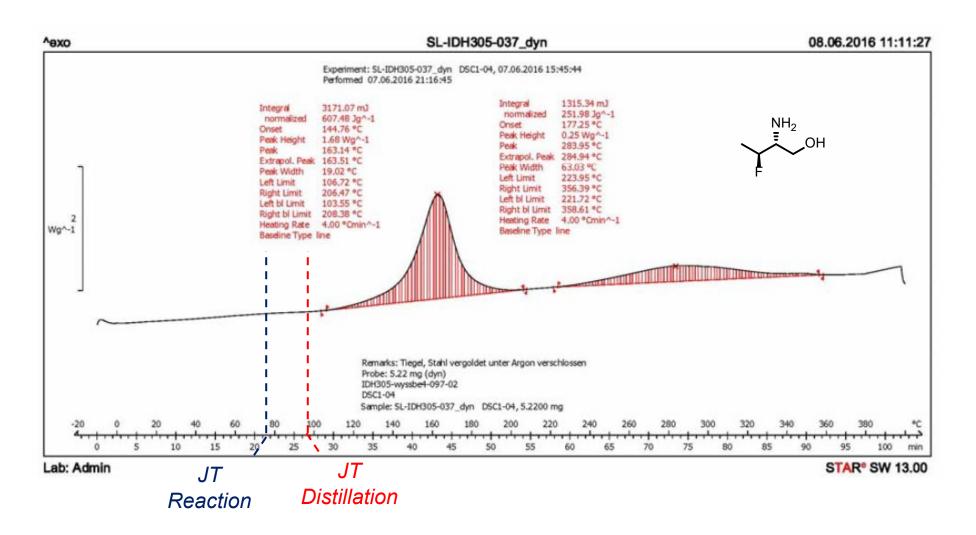
Opportunities

Difluoropyrimidine:

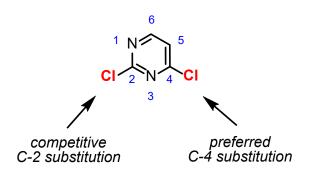

- Very sensitive to hydrolysis and residual BnOH
- Limited availability on scale
- High price

Fluorinated waste

Process unfriendly reaction conditions:


- NaH, Crown ether
- N-Methylpyrrolidinone

Access to a cleaner oxazolidinone



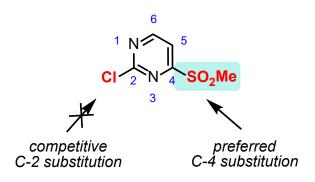
Side products?

Thermal stability

2.4-dichloropyrimidine (DCP)

SNAr using weak nucleophiles:
• low reactivity

• uses protic polar solvents and


strong basestivity issue between

C-4 and C-2 amination

Entry	Solvent	Base (equiv)	Temp (°C)	DCP	C-4	C-2
1	THF	NaH (1.1)	60	26	15	14
2	Me-THF	K ₂ CO ₃ (3)	80	49	24	15
3	Toluene	K ₂ CO ₃ (3)	110	31	28	8
4	MeCN	K ₂ CO ₃ (3)	60	16	63	13
5	Sulfolane	K ₂ CO ₃ (3)	110	7	72	7
6	N-Butylpyrrolidone	K ₂ CO ₃ (2)	80	1	75	5

> Isolated yield: 68% with ca. 6% in ML

Bruening, F. et al. Eur. J. Org. Chem. 2017, 3222-3228.

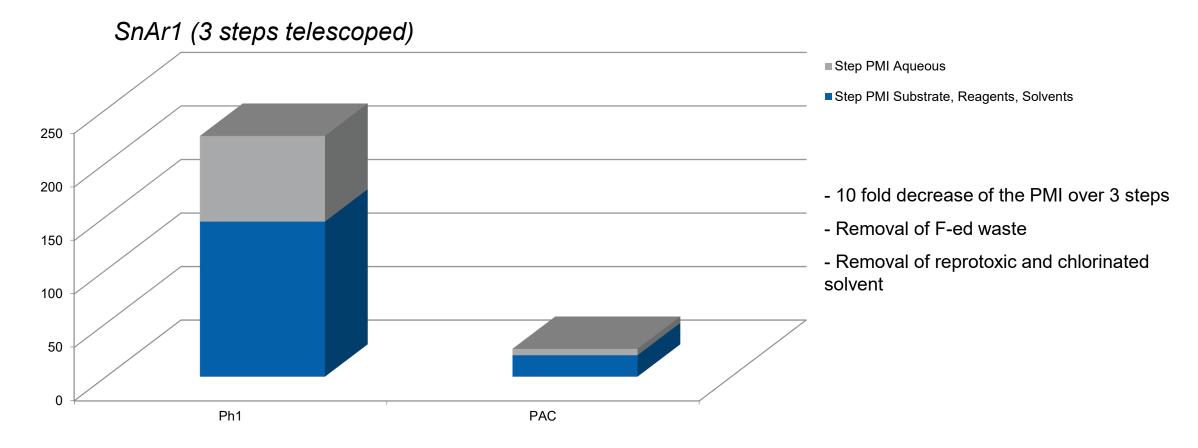
SNAr using weak nucleophiles:
• high reactivity

- excellent selectivity at C-4
- mild conditions
- unstable

Entry	SM	Additive (equiv)	yield C-4 / C-2		
1	CI,SO ₂ Me	-	89 >99:1		
2ª	DCP	MeSO ₂ Na (1)	imp + degradation		
3 ^a	DCP	MeSO₂Na (0.03)	22 1.3:1		
4 ^a	DCP	MeSO ₂ Na (0.03) + TBABr (0.1)	91	42:1	
5 ^a	DCP	TBABr (0.1)	72	8:1	

^aReaction run in THF at 50 °C using unsubstitued oxazolidinone as model substrate

Impurity formed at high MeSO₂Na loading


92% isolated yield C-4/C-2: >99:1

Bruening, F. et al. Eur. J. Org. Chem. 2017, 3222-3228.

On 1 kg scale:

Isolated yield: 71.3% over 3 steps (ca. 89%/step) Purity 99.3 A%, regioisomer 0.06 A%

Effect on sustainability

Break?

Sustainable Processes

Process development

«The ideal chemical process is that which a one-armed operator can perform by pouring the reactants into a bathtub and collecting pure product from the drain hole.»

Sir John Cornforth (Nobel Prize, 1976)

Aspects to consider in process development

- ✓ Safety
- ✓ Number of steps
- ✓ Yield
- ✓ Complexity of the synthesis
- ✓ Robustness
- ✓ Ecologically benign
- Environmentally acceptable
- ✓ Availability of raw materials
- ✓ Economy

- Choice/Stoichiometry of reagents
- Choice of solvent/solvent effects
- Order of addition
- Concentration/volume
- Stirring/Mixing
- Analysis
- Temperature control
- Pressure/gaz evolution?
- Work-up
- Filtration
- Isolation
- Physical form
- (Depletion of) by products
- Purity
- Throughput
- Telescoping
- Waste
- Intellectual property
- Equipment required

Aspects to consider in process development

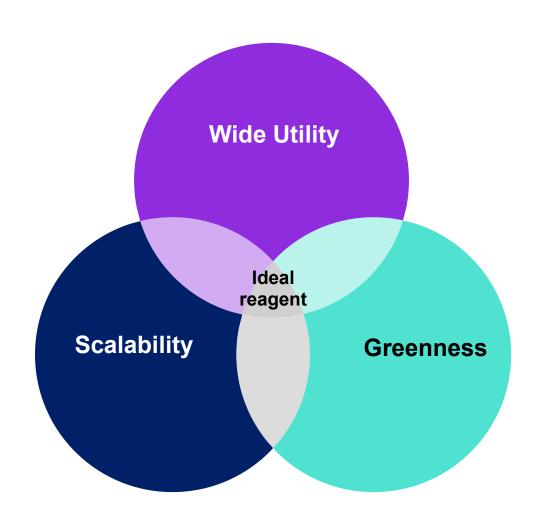
- ✓ Safety
- ✓ Number of steps
- ✓ Yield
- ✓ Complexity of the synthesis
- √ Robustness
- ✓ Ecologically benign
- Environmentally acceptable
- ✓ Availability of raw materials
- ✓ Economy

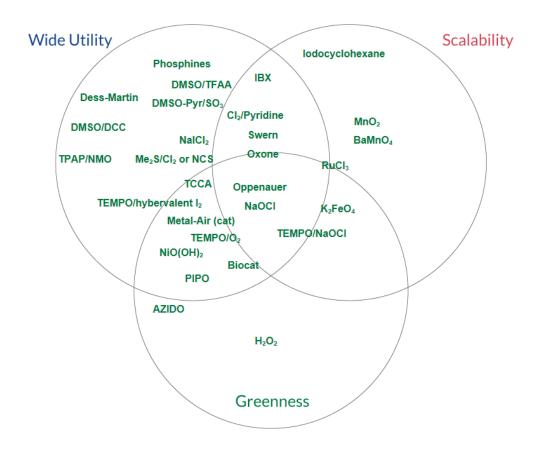
- Choice/Stoichiometry of reagents
- Choice of solvent/solvent effects
- Order of addition
- Concentration/volume
- Stirring/Mixing
- Analysis
- Temperature control
- Pressure/gaz evolution?
- Work-up
- Filtration
- Isolation
- Physical form
- (Depletion of) by products
- Purity
- Throughput
- Telescoping
- Waste
- Intellectual property
- Equipment required

Solvent & reagents

Solvent Selection Guide – Chem21

Ranking	Solvents
Recommended	Water, EtOH, iPrOH, nBuOH, AcOEt, AcOiPr, AcOnBu, PhOMe, sulfolane
Recommended or Problematic?	MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, cyclohexanone, AcOMe, AcOH, Ac ₂ O
Problematic	Me-THF, heptane, Me-cyclohexane, toluene, xylene, chlorobenzene, acetonitrile, DMPU, DMSO
Problematic or Hazardous ?	THF, MTBE, cyclohexane, DCM, formic acid, pyridine
Hazardous	iPr ₂ O, dioxane, DME, pentane, hexane, DMF, DMA, NMP, TEA, methoxyethanol
Highly hazardous	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane

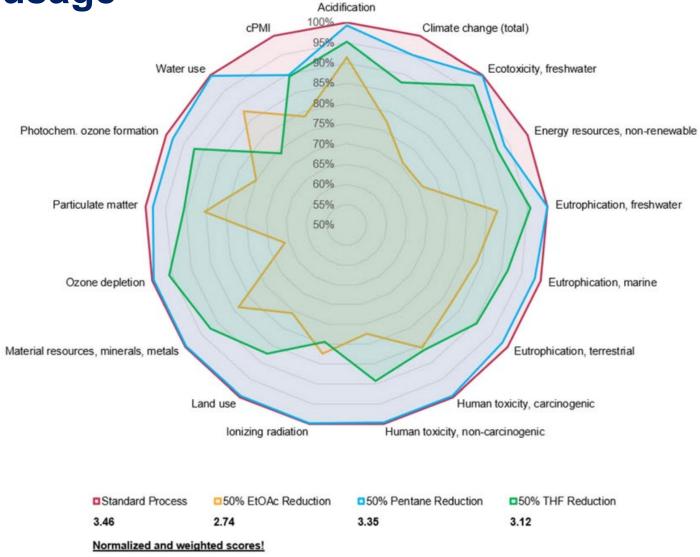




67% convergence (AZ, ACS GCI, GSK, Pfizer, Sanofi)
The divergences reflect the different weighing of criteria

Denis Prat, John Hayler, Andy Wells *Green Chem.* **2014**, *16*, 4546.

ACS reagent guide


2024 Green Assessments

		Materials	Particulate matter EF v3.1 no LT	Photochem. ozone formation EF v3 1 no LT	Water use EF v3.1 no LT	Precision Score - Material				
	Mater		Disease incidence	kg NMVOC eq	m3 deprived	acc. to Figure 4	250	Material resources	Ozone depletion	Particulate mat
		2-Bromochlorobenzene	0.00000011	0.01019104	6.44835067	70%	no LT	EF v3.1 no LT Minerals, metals	EF v3.1 no LT ODP100 Years	EF v3.1 no LT
100.0		1.3-Dimethoxybenzene	0.00000017	0.01203710	1.64413183	70%		kg Sb eq	kg CFC-11 eq	Disease inciden
Ma	2-Bromochlo	n-Butyl lithium	0.00000125	0.07598894	39.96838526	70%	2996	0.00001495	0.00000028	0.00000011
	1.3-Dimethox	Chlorodicyclohexylphosph.	0.00000192	0.45346309	20.78250682	50%	9535	0.00003007	0.0000019	0.00000017
	n-Butyl I	Silica gel	0.00000009	0.00379393	0.61007998	80%	4157	0.00033385	0.00000101	0.00000125
2-Bromoc C	hlorodicycloh	Cellulose acetate	0.00000026	0.01574273	8.28030292	80%	19536	0.00034103	0.00000979	0.00000192
1.3-Dimet	Silica	Iron(III) chloride	0.00000001	0.00058938	0.12780337	95%	7582	0.00004300	0.00000001	0.00000009
n-But	Cellulose	Pd(OAc)2	0.00000274	0.28071208	2.79555207	80%	9467	0.00006916	0.00000021	0.00000026
Chlorodicyc	Iron(III) cl	Methylmagnesium chloride	0.00000366	0.02641772	0.56882861	70%	1239	0.00000588	0.00000006	0.00000001
Sili	Pd(OA	Tetrahydrofuran	0.00000345	0.24060676	142.59338646	95%	5178	0.00070005	0.00000010	0.00000274
Cellulo N	lethylmagnes	n-Hexane	0.00000002	0.00618925	0.27588895	95%	4059	0.00001130	0.00000163	0.00000366
Iron(III	Tetrahyd	Ethyl acetate	0.00000334	0.32094189	45.48378411	95%	59248	0.00037177	0.00000136	0.00000345
Pd	n-Hex	Acetone	0.00000030	0.03427291	3.54771212	95%	5620	0.00000460	0.00000004	0.00000002
Methylmagr	Ethyl ac	Methanol	0.00000001	0.00190840	0.09609906	95%	57227	0.00045631	0.00000114	0.00000334
Tetrah	Aceto	Pentane	0.00000066	0.06243819	0.81135036	95%	7153	0.00003543	0.00000007	0.00000030
n-t-	Metha	Water	0.00000000	0.00000006	0.00001227	95%	9650	0.00000086	0.00000002	0.00000001
Ethyl	Penta	SUM	0.00001799	1.54529349	274.03417489		5874	0.00000954	0.00000008	0.00000066
Ac	Wat.		010 0.0000		vvv 9,000	V-0-0	7529	0.00000000	0.00000000	0.00000000
Me	SUN	3.09241	564 0.0000	0.0000	0309 4.7872	4685 847.5	1536048	0.00242781	0.00001600	0.00001799
Pen		0.05229521	11,46541616	24.7/106178	36,23707794	6.8/7/9428	- /	96.25235194	0.00002879	0.00979340
Wa	ter	0.00000016	0.00001730	0.02323600	0.02325330	0.00192578		0.00020484	0.00000000	0.00000002
SU	M	3.31374855	240.56907631	119.24289136	359.81196768	2710.07969230	63	371.99212043	0.02707944	0.31503814

Green Chem., 2024, 26, 5239

Comparison of material usage

Green Chem., 2024, 26, 5239

Fig. 6 Relative spider diagram of development scenarios and their normalized and weighted score.

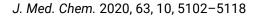
Aspects to consider in process development

- ✓ Safety
- ✓ Number of steps
- ✓ Yield
- ✓ Complexity of the synthesis
- ✓ Robustness
- ✓ Ecologically benign
- Environmentally acceptable
- ✓ Availability of raw materials
- ✓ Economy

- Choice/Stoichiometry of reagents
- Choice of solvent/solvent effects
- Order of addition
- Concentration/volume
- Stirring/Mixing
- Analysis
- Temperature control
- Pressure/gaz evolution?
- Work-up
- Filtration
- Isolation
- Physical form
- (Depletion of) by products
- Purity
- Throughput
- Telescoping
- Waste
- Intellectual property
- Equipment required

Aspects to consider in process development

- ✓ Safety
- ✓ Number of steps
- ✓ Yield
- ✓ Complexity of the synthesis
- √ Robustness
- ✓ Ecologically benign
- Environmentally acceptable
- ✓ Availability of raw materials
- ✓ Economy


- Choice/Stoichiometry of reagents
- Choice of solvent/solvent effects
- Order of addition
- Concentration/volume
- Stirring/Mixing
- Analysis
- Temperature control
- Pressure/gaz evolution?
- Work-up
- Filtration
- Isolation
- Physical form
- (Depletion of) by products
- Purity
- Throughput
- Telescoping
- Waste
- Intellectual property
- Equipment required

Telescoping

Pros Cons

Remibrutinib

- *Therapeutic Area:* Immunology
- Special biological features: Highly selective Bruton kinase covalent inhibitor
- *Main indication*: urticaria, affect ca. 40 million people worldwide
- Special chemical features: no chiral center, acrylamide moiety

Highly Convergent MedChem Route

Highly Convergent MedChem Route

Int. 7 Detailed Process

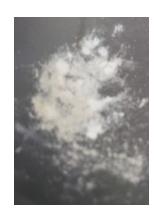
- Mitsunobu reaction run in anhydrous conditions with 1.3 equiv of b, 1.3 equiv of PPh₃ and 1.6 equiv of DIAD.
- At the end of the reaction PPh₃O/H₂-DIAD is crashed out by heptane addition and filtered off.
- Traces of **a** are removed with a basic wash.
- Organic phase is transfered to a hydrogenator, iPrOH and NH₄OH are added
- The amination is run overnight at 70 °C
- **7** is crystallized after concentration and addition of water.

Intermediate Received For Campaign

SI.	Tests	Results				
1	Appearance		Off white solid along with black particles			
2	Identification (HPLC-RT)	Complies				
	Purity (By HPLC)	99.4 %				
	Sum of impurities	0.	5 %			
	Other by-products each	RRT	% Area			
3		0.726	0.05			
		0.733	0.06			
		0.91	0.20			
		0.93	0.09			
		1.02	0.11			
4	Assay (By potentiometric titration)	96.8 %				

STORAGE: Preserve in an air tight container, store at below 30°C

CONCLUSION: Complies


Compound received from our Supplier

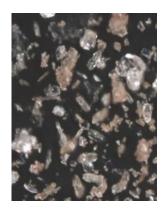

Figure 1. Hand picked lumps


Figure 2. Dark lumps sieved off from the batch

Figure 3. Grinded sieved off lumps

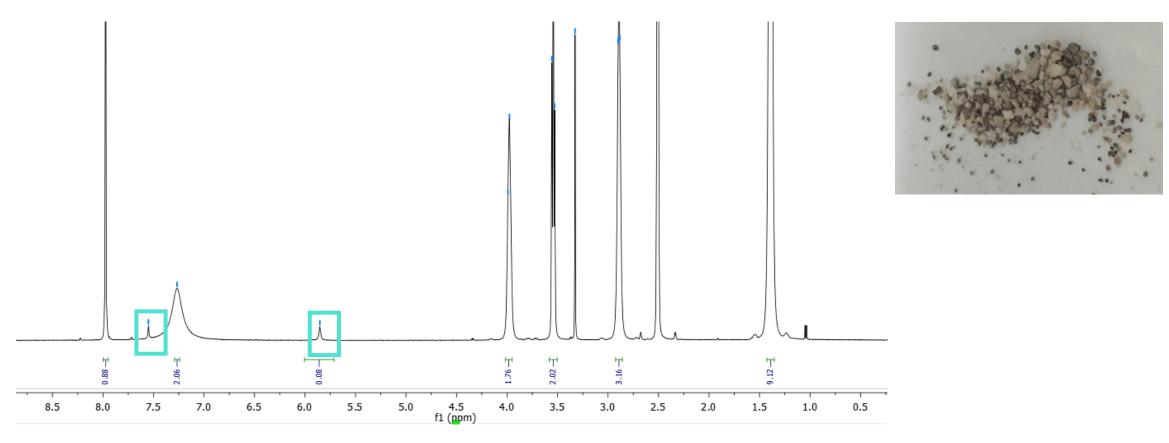

Figure 4. Microscopic pictures of the grinded lumps

Figure 5. SEM picture of the grinded lumps

Investigation

NMR of sieved 7 (enriched in black matter)

Reimagining Medicine

Trituration with Acetone

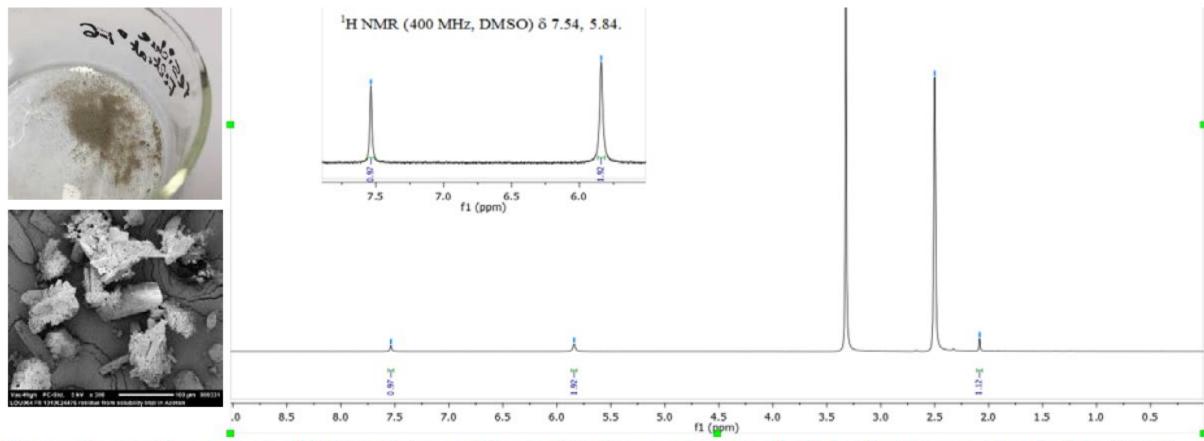
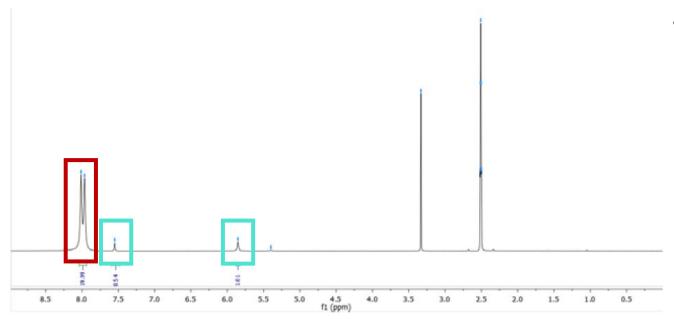
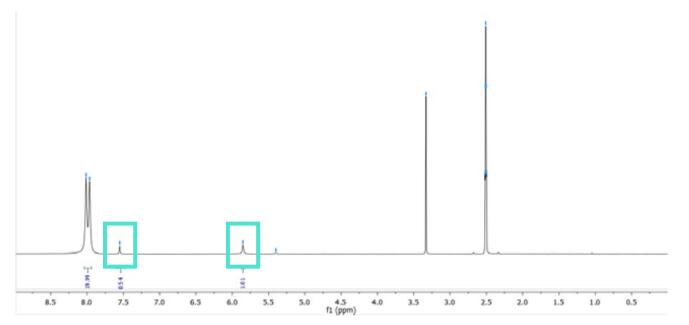



Figure 3: NMR spectra and SEM picture of the isolated grey compound. Only the two previously identified signals belong to the impurity

Int. 7 Detailed Process

- Mitsunobu reaction run in anhydrous conditions with 1.3 equiv of b, 1.3 equiv of PPh₃ and 1.6 equiv of DIAD.
- At the end of the reaction PPh₃O/H₂-DIAD is crashed out by heptane addition and filtered off.
- Traces of a are removed with a basic wash.
- Organic phase is transferred to a hydrogenator, iPrOH and NH₄OH are added
- The amination is run overnight at 70 °C
- **7** is crystallized after concentration and addition of water.

Excess Reagent Carry Over



- Widely used as foaming agent
- Used in food chemistry outside of EU (E927) to bleach flour and as a dough conditioner
- «Yoga mat» chemical

Reimagining Medicine

Excess Reagent Carry Over

- No toxicological alert
- Real ingredient found in food

Break?

Use case: IDH305 side chain

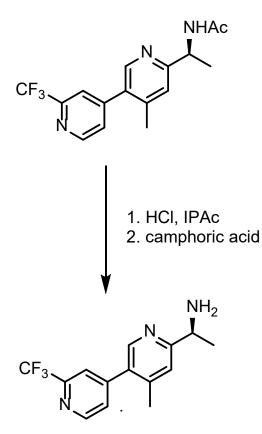
Side Chain - Initial Route:

$$CF_{3} + CF_{3} + C$$

Side Chain - Alternate Route 1

0.5 eq camphoric acid

NHAc


 NH_2

Side Chain - Alternate Route 1

- High enantiopurity obtained (>98% ee)
- Good overall conversion

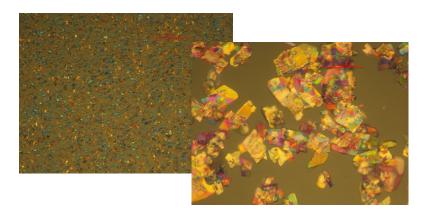
But:

- Sourcing of starting material of suitable quality uncertain
- 2 transition metals used in the sequence
- Special equipment required (H₂, 4 bar)

0.5 eq camphoric acid

Side Chain - Alternate Route 2: DKR

Side Chain DKR - mechanism


Solubility difference between the diastereoisomeric salts:

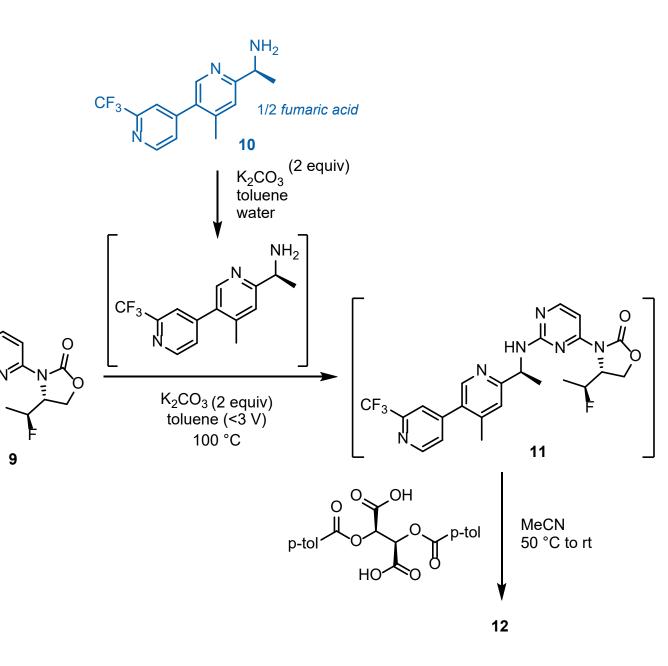
1.2% (R, R) vs 0.6% (S, R)

Side Chain - Alternate Route 2: DKR

- Good enantioselectivity
- Very easy set-up
- Fumarate salt gives coarse particles facilitating filtration

Side Chain Transaminase

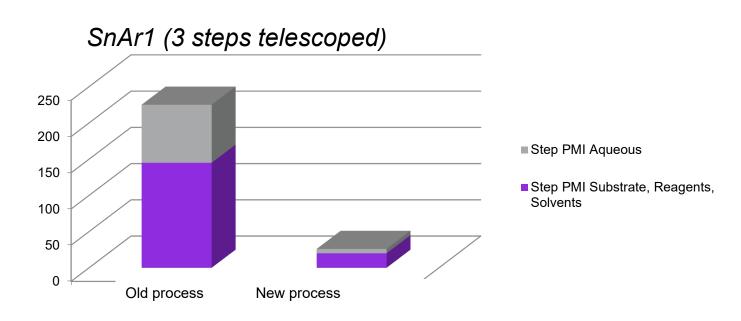
Main Chain: SN_{Ar} 2

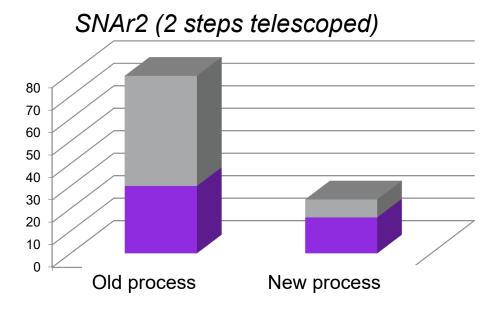

Main Chain: SN_{Ar} 2

- First trials needed >72 h to reach acceptable conversion in toluene
- Scale up effect was observed between 100 mg and 1 g scale reactions which gave us a hint on the impact of concentration
- → use of 3 V of toluene gave >98% conv. in less than 24 h

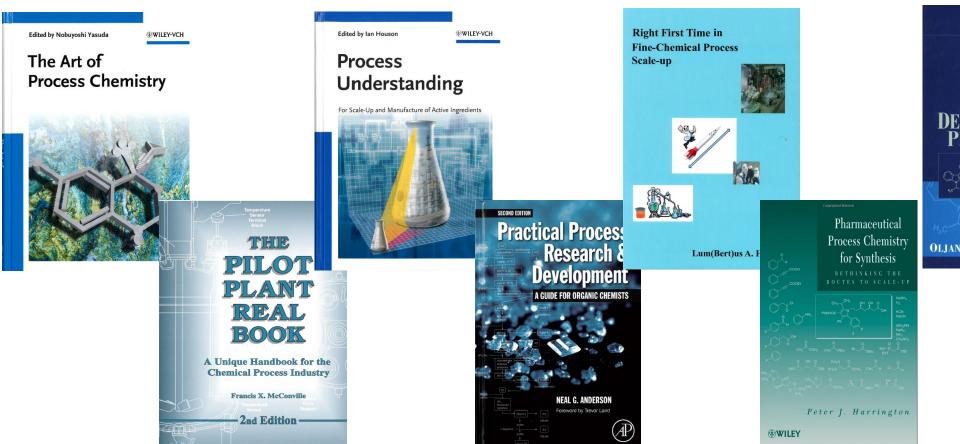
Main chain: SN_{Ar}2

- Free basing of the side chain has to be done prior to the reaction
- Toluene suitable for free basing
- After conversion, an AcOH 1N wash removes traces of the side chain
- A solvent switch to MeCN and addition of tartaric salt allows for an easily isolation
- Crystallisation purges all remaining impurities except desfluoro


Isolated yield on kg-scale: 87%

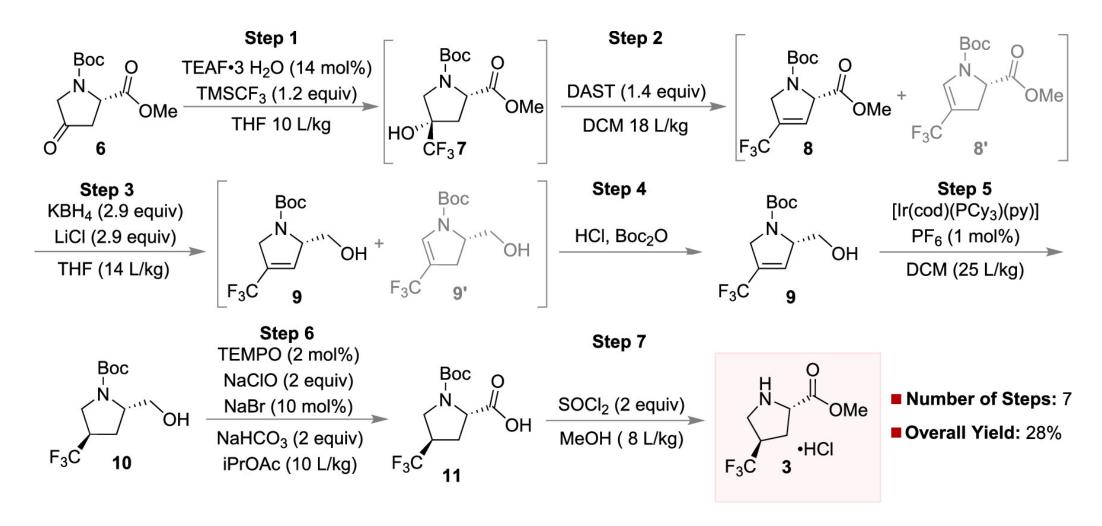


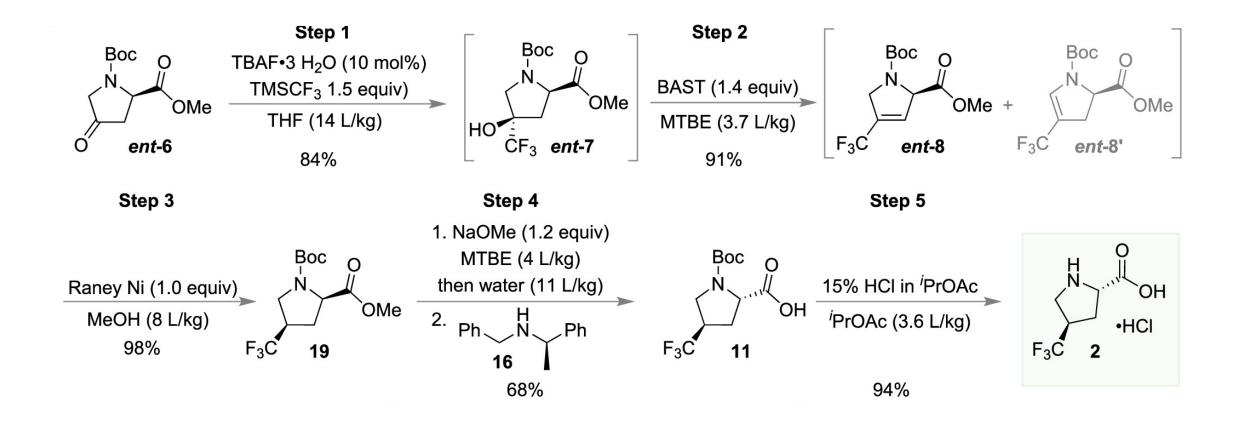
Effect on sustainability


Additional decrease in PMI

Removal of undesired solvents and fluorinated waste

Book recommendations




Assignement 2024

Synthesis 1

Synthesis 2

Assignement

- Assume that maximum daily dose for this drug is 200 mg. What would be the maximum concentration for an impurity that:
 - has no structural alerts?
 - has a structural alert for mutagenicity?
 - has a acceptable intake of 100 ng/day?
- 2. Discuss the pro and cons of each routes according to efficiency, thermal safety, equipment, environmental concerns...
- 3. Justify your choice of the route based on pharmaceutical industry priorities.

Assignement 2023

Back to the early main chain of IDH305

threonine
$$\begin{array}{c} & & & \\$$

Impurity profile of 5: formation of the chloroanalogue (up to 0.2 A%):

Back to the early main chain of IDH305

Impurity profile of 5: formation of the chloroanalogue (up to 0.2 A%)

Mutagenic in Ames test

Deoxofluorination with HF/SF₄

threonine
$$\begin{array}{c} SF_4 \\ \hline \\ HN \\ \hline \\ OMe \\ \\ OMe \\ \hline \\ OMe \\ \\ OMe \\ \hline \\ OMe \\ \\ OMe \\ \hline \\ OMe \\ \\ OMe \\ \hline \\ OMe \\ \\ OMe \\ \\ OMe \\ \hline \\ O$$

Deoxofluorination with HF/SF₄

- Excess HF necessary to avoid formation of iminosulfur derivatives:
 5 equiv HF, 3.0 equiv SF₄, 5 V DCM, -78 °C, o/n
- Overall yield 67%, dr 92:8

Aziridine opening

Collaboration with Prof. Gilmour

Molnár, I. et al Chem. Eur. J. 2014, 20, 794-800.

Table 4. Enantioselective, organocatalytic aziridination of small and medium cyclic enals $(15 \rightarrow 18)$ using catalyst $(S)-1$. ^[a]					
	$(CH_2)_n$ $n = 3-6$		0 mol% (S)-1 equiv. NaOAc n-heptane rt	(CH ₂) _n	(N−Boc H
	Substrate	Conditions	Yield [%] ^[b] (conversion)	d.r. ^[c]	e.r.
1	15	0.1 mmol scale 4 h	78 (>99)	>20:1	98.5:1.5 ^[d]
2		0.1 mmol scale 29 h 1.00 mmol scale 39 h	84 (>99) 81 (>99)	>20:1 >20:1	97.5:2.5 ^[d] 96.0:4.0 ^[d]
4	16	5.00 mmol scale 3 d	83 (97)	>20:1	95.5:4.5 ^[d]
5		0.1 mmol scale 8 d	93 (>98)	>20:1	98.5:1.5 ^[e]
6	17	1.00 mmol scale 13 d	91 (95)	> 20:1	98.5:1.5 ^[e]
7 8	18	0.1 mmol scale 6 d 1.00 mmol scale 8 d	85 (97) 85 (96)	> 20:1 > 20:1	99.0:1.0 ^[e] 99.5:0.5 ^[e]

Aziridine opening

- Organocatalyst should be easy to access and affordable
- High loading of catalyst
- TASF is too expensive for large scale manufacturing
- Reaction conditions should be mild and compatible to a multi-purpose lab/plant

Aziridine opening

Dr. J. Metternich

Assignement

- 1. Propose a mechanism for the formation of the chloro impurity.
- 2. Calculate the authorized concentration of the chloro impurity assuming lifetime treatment and a daily dose of 500 mg.
- 3. Three options were presented for the early main chain of IDH305:
 - analyse each routes (pros & cons) by keeping in mind pharmaceutical industry priorities
 - pick your favorite and explain your decision.

